

Technical Compliance Statement CE EMC Test Report

For the following information

Ref. File No.: C1M1612196

(C1M1602169)

Product : (1)Circuit Tester with Nixie Display (2)Digital LCD Circuit Tester

(3) Digital Circuit Tester with 2 piercing test probes

Model Number : (1)9DC243 (2)9DC242 (3)9DC242A

Applicant : King Tony Tools Co., Ltd.

Manufacturer : King Tony Tools Co., Ltd.

Standards :

Emission: EN 61000-6-3: 2007 +A1:2011 +AC:2012

Immunity: EN 61000-6-1:2007

(EN 61000-4-2:2008, EN 61000-4-3:2010, EN 61000-4-8:2009)

We hereby certify that the above product has been tested by us with the listed standards and found in compliance with the council EMC directive 2014/30/EU. The test data and results are issued on the EMC test report no. EM-E160913.

Signature

Alex Deng/Deputy Manager

Date: 2016. 12. 13

Test Laboratory:

AUDIX Technology Corporation, EMC Department

TAF Accreditation No.: 1724 Web Site: www.audixtech.com

The statement is based on a single evaluation of one sample of the above-mentioned products. It does not imply an assessment of the whole production and does not permit the use of the test lab logo.

EMC TEST REPORT

for

King Tony Tools Co., Ltd.

(1)Circuit Tester with Nixie Display (2)Digital LCD Circuit Tester (3)Digital Circuit Tester with 2 piercing test probes

Model No.: (1)9DC243 (2)9DC242 (3)9DC242A

Prepared for: King Tony Tools Co., Ltd.

No 11, 150 Alley, 516 Lane, 2 Sec. Hsi Nan Rd. Wu-Jih Shiang, Taichung Hsien Taiwan

Prepared by: AUDIX Technology Corporation

EMC Department

No. 53-11, Dingfu, Linkou Dist., New Taipei City 244, Taiwan

Tel: (02) 2609-9301, 2609-2133

Fax: (02) 2609-9303

File Number : C1M1612196 (C1M1602169)

Report Number : EM-E160913

Date of Test : 2016. 02. 24 ~ 03. 04

Date of Report : 2016. 12. 13

TABLE OF CONTENTS

D	escrip	tion	Page
T	est Re	port Verification	3
1.	DES	CRIPTION OF VERSION	4
		IMARY OF STANDARDS AND RESULTS	
4.	2.1.	Description of Standards and Results	
	2.1.	Description of Standards and Results. Description of Performance Criteria	
2		•	
٥.		ERAL INFORMATION	
	3.1.	Description of Device (EUT)	
	3.2.	Tested Supporting System Details	
	3.3.	Description of Test Facility	
		NDUCTED DISTURBANCE MEASUREMENT	
5.	RAD	DIATED DISTURBANCE MEASUREMENT	
	5.1.	Test Equipment	
	5.2.	Block Diagram of Test Setup	
	5.3.	Limits for Radiated Disturbance (EN 61000-6-3)	
	5.4.	Operating Condition of EUT	
	5.5.	Test Procedure	
	5.6.	Radiated Disturbance Measurement Results	
6.	ELE	CTROSTATIC DISCHARGE IMMUNITY TEST	18
	6.1.	Test Equipment	18
	6.2.	Block Diagram of Test Setup	18
	6.3.	Test Standard	
	6.4.	Severity Levels and Performance Criterion	19
	6.5.	Operating Condition of EUT	
	6.6.	Test Procedure	
	6.7.	Test Results	
7.	RF F	TIELD STRENGTH IMMUNITY TEST	
	7.1.	Test Equipment	24
	7.2.	Block Diagram of Test Setup	
	7.3.	Test Standard	
	7.4.	Severity Levels and Performance Criterion	
	7.5.	Operating Condition of EUT	
	7.6.	Test Procedure	
	7.7.	Test Results	27
8.	POW	VER FREQUENCY MAGNETIC FIELD IMMUNITY TEST	29
	8.1.	Test Equipment	
	8.2.	Block Diagram of Test Setup	29
	8.3.	Test Standard	29
	8.4.	Severity Levels and Performance Criterion	
	8.5.	Operating Condition of EUT	
	8.6.	Test Procedure	
	8.7.	Test Results	
9.	MEA	ASUREMENT UNCERTAINTY LIST	32
10). PH(OTOGRAPHS	35
		Photos of Radiated Disturbance Measurement at Open Area Test Site	
		Photos of Electrostatic Discharge Immunity Test	
		Photos of RF Strength Immunity Test	
		Photo of Power Frequency Magnetic Field Immunity Test	
		1 7 2	

TEST REPORT VERIFICATION

Applicant : King Tony Tools Co., Ltd.

Manufacturer : King Tony Tools Co., Ltd.

EUT Description : (1)Circuit Tester with Nixie Display (2)Digital LCD Circuit Tester

(3)Digital Circuit Tester with 2 piercing test probes

(A) Model No. : (1)9DC243 (2)9DC242 (3)9DC242A

(B) Serial No. : N/A

(C) Power Supply : (1)DC 0.3-60V (2)(3)DC 5-28V

(D) Test Voltage : DC 12V (Via Battery)

Measurement Standard Used:

Emission: EN 61000-6-3: 2007 +A1:2011 +AC:2012

Immunity: EN 61000-6-1:2007

(EN 61000-4-2:2008, EN 61000-4-3:2010, EN 61000-4-8:2009)

The device described above was tested by AUDIX Technology Corporation to determine the maximum emission levels emanating from the device, its ensured severity levels, and performance criterion. This test report contains the measurement results, and AUDIX Technology Corporation assumes full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT is technically compliant with the requirements of EN 61000-6-3 and EN 61000-6-1 standards.

Other emission & relevant immunity tests in EN 61000-6-3 and EN 61000-6-1 are omitted and regarded as compliance due to the EUT uses DC power.

This report applies to above tested sample only and shall not be reproduced in part without written approval of AUDIX Technology Corporation.

Date of Test: 2016. 02. 24 ~ 03. 04 Date of Report: 2016. 12. 13

Producer:

(Harper Lee/Assistant Administrator)

Signatory:

Alex Deng/Deputy Manager)

1. DESCRIPTION OF VERSION

Edition No.	Date of Revision	Revision Summary	Report Number
0	2016. 12. 13	Original Report.	EM-E160913

2. SUMMARY OF STANDARDS AND RESULTS

2.1. Description of Standards and Results

The EUT has been tested according to the applicable standards as referenced below.

EMISSION (EN 61000-6-3)						
Description of Test Item	Standard	Limits	Results			
Conducted disturbance at main terminal	EN 61000-6-3:2007 +A1:2011 +AC:2012	Class B	N/A			
Conducted common mode disturbance at telecommunication port	EN 61000-6-3:2007 +A1:2011 +AC:2012	N/A	N/A			
Dell'are I I'm I area	EN 61000-6-3:2007 +A1:2011	Class B	PASS			
Radiated disturbance	+AC:2012	Margin 6.81dB at 182.950MHz				
Harmonic current emissions	EN 61000-3-2:2014	Section 5	N/A			
Voltage fluctuations & flicker	EN 61000-3-3:2013 Class B		N/A			
IMMUNITY (EN 61000-6-1)						
Performance						

Description of Test Item	Basic Standard	Performance Criteria	Results
Electrostatic discharge (ESD)	EN 61000-4-2:2008	В	PASS
Radio-frequency, Continuous radiated disturbance	EN 61000-4-3:2006 +A1:2008 +A2:2010	A	PASS
Electrical fast transient (EFT)	EN 61000-4-4:2012	В	N/A
Surge	EN 61000-4-5:2014	В	N/A
Radio-frequency, Continuous conducted disturbance	EN 61000-4-6:2014	A	N/A
Power frequency magnetic field	EN 61000-4-8:2010	A	PASS
Voltage dips, 0% reduction voltage		В	
Voltage dips, 70% reduction voltage	EN 61000-4-11:2004	С	N/A
Voltage interruptions		С	

Above items shown N/A are not applicable in this report and regarded as compliance due to EUT uses DC power.

2.2. Description of Performance Criteria

The variety and the diversity of the apparatus within the scope of this standard makes it difficult to define precise criteria for the evaluation of the immunity test results.

If, as a result of the application of the tests defined in this standard, the apparatus becomes dangerous or unsafe, the apparatus shall be deemed to have failed the test.

A functional description and a definition of performance criteria, during or as a consequence of the EMC testing, shall be provided by the manufacturer and noted in the test report, based on the following criteria:

2.2.1. Performance criterion A

The apparatus shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level or the permissible performance loss is not specified by the manufacturer, either of these may be derived from the product description and documentation and what the user may reasonably expect from the apparatus if used as intended.

2.2.2. Performance criterion B

The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed. No change of actual operating state or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, either of these may be derived from the product description and documentation and what the user may reasonably expect from the apparatus if used as intended.

2.2.3. Performance criterion C

Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls.

3. GENERAL INFORMATION

3.1. Description of Device (EUT)

Description : (1)Circuit Tester with Nixie Display (2)Digital

LCD Circuit Tester (3)Digital Circuit Tester with

2 piercing test probes

Model Number : (1)9DC243 (2)9DC242 (3)9DC242A

Model No.	9DC243	9DC242	9DC242A		
Description	Circuit Tester with Nixie Display	Digital LCD Circuit Tester	Digital Circuit Tester with 2 piercing test probes		
Display	Nixie Display	LCD Backlight	LCD Backlight		
Range	0.3-60V DC	5-28V DC	5-28V DC		
System voltage	12-24-36-48V	6-12-24V	6-12-24V		
Cable	Coil cord stretches to 12-ft.				
Buzzer	Tester will light and buzz when a positive voltage is detected.	Х			
Testing current <10mA		<10mA	<10mA		
probe	Different				
Appearance	Different				

The Models 9DC243 and 9DC242A were tested

in this report.

Applicant : King Tony Tools Co., Ltd.

No 11, 150 Alley, 516 Lane, 2 Sec. Hsi Nan Rd. Wu-Jih Shiang, Taichung Hsien Taiwan

Manufacturer : King Tony Tools Co., Ltd.

No 11, 150 Alley, 516 Lane, 2 Sec. Hsi Nan Rd. Wu-Jih Shiang, Taichung Hsien Taiwan

Cable : Unshielded, Undetachable, 0.5m

Date of Receipt of Sample : 2016. 02. 22

Date of Test : 2016. 02. 24 ~ 03. 04

3.2. Tested Supporting System Details

3.2.1. Support Peripheral Unit

No. Product		Brand	Model No.	Serial No.	Approval				
For Radiated Disturbance Measurements									
1	BATTERY	YUASA	YTX7A-BS N/A		N/A				
For ESD、RS and PFMF Immunity Tests									
1	BATTERY	LEPO	115E41R	N/A	N/A				

3.2.2. Cable List

No.	Cable Description Of The Above Support Units					
For F	For Radiated Disturbance Measurements					
1	Cable: Unshielded, Detachable, 0.3m					
For ESD、RS and PFMF Immunity Tests						
1	Cable: Unshielded, Detachable, 0.3m					

3.3. Description of Test Facility

Name of Firm : AUDIX Technology Corporation

EMC Department

No. 53-11, Dingfu, Linkou Dist., New Taipei City 244, Taiwan

Test Site : No. 8 Open Area Test Site

No. 67-4, Dingfu, Linkou Dist., New Taipei City 244, Taiwan

Immunity Test Site

No. 53-11, Dingfu, Linkou Dist., New Taipei City 244, Taiwan

NVLAP Lab. Code : 200077-0

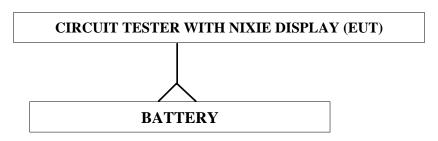
TAF Accreditation No : 1724

4. CONDUCTED DISTURBANCE MEASUREMENT

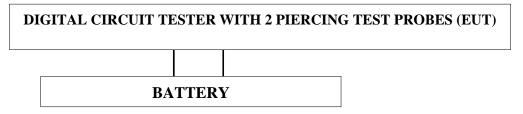
The conducted disturbance voltage limits are not required for EUT which only employ DC power for operation.

5. RADIATED DISTURBANCE MEASUREMENT

5.1. Test Equipment

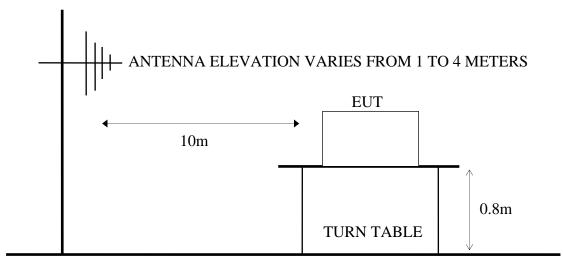

The following test equipment was used during the radiated disturbance measurement: (At No. 8 Open Area Test Site)

Item	Type	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Spectrum Analyzer	Agilent	N9010A-507	MY51250907	2015. 04. 13	1 Year
2.	Test Receiver	R & S	ESCI	100558	2015. 10. 30	1 Year
3.	Amplifier	HP	8447D	2944A06891	NCR	NCR
4.	Bilog Antenna	Schaffner	CBL6112B	2735	2015. 02. 27	1 Year


5.2. Block Diagram of Test Setup

5.2.1. Block Diagram of connection between EUT and simulators

(1)Test Model: 9DC243



(2)Test Model: 9DC242A

5.2.2. Open Area Test Site (10m) Setup Diagram

ANTENNA TOWER

GROUND PLANE

5.3. Limits for Radiated Disturbance (EN 61000-6-3)

Frequency	Distance	Field Strengths Limits
(MHz)	(Meters)	$(dB\mu V/m)$
30 ~ 230	10	30
230 ~ 1000	10	37

Note: (1) The tighter limit shall apply at the edge between two frequency bands.

(2) Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the E.U.T.

5.4. Operating Condition of EUT

- 5.4.1. Set up the **EUT** and simulator as shown on 5.2.
- 5.4.2. To turn on the power of all equipment.
- 5.4.3. The **EUT** was on normal function during all testing.

5.5. Test Procedure

The EUT and its simulator were placed on a turn table which was 0.8 meter above ground. The turn table rotate 360 degrees to determine the position of the maximum emission level. EUT was set to 10 meters away from the receiving antenna which were mounted on an antenna tower. The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level. Broadband antenna was used as a receiving antenna. Both horizontal and vertical polarizations of the antenna were set on measurement. In order to find the maximum emission, all of the interface cables were manipulated according to EN 61000-6-3 (CISPR 16-2-3) regulation.

The bandwidth of the R & S Test Receiver ESCI7 was set at 120 kHz.

The frequency range from 30MHz to 1000MHz was checked with Peak detector and all final readings of measurement were with Quasi-Peak detector at open area test site.

5.6.Radiated Disturbance Measurement Results

PASSED. All emissions not reported below are too low against the prescribed limits.

For 30MHz~1000MHz frequency range:

The EUT was performed during this section testing and all the test results are attached in next pages.

EUT: Circuit Tester with Nixie Display,

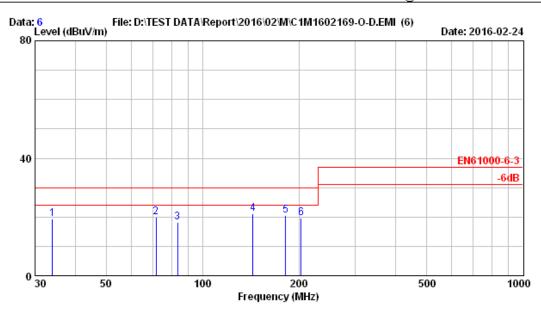
Digital Circuit Tester with 2 piercing test probes

M/N: 9DC243, 9DC242A

Test Date: 2016. 02. 24 Temperature: 25 Humidity: 58%

The detail of test mode as follows:

Mode	Test Model	Test Mode	Reference Test Data No.		
Mode	Test Model	Test Mode	Horizontal	Vertical	
1.	9DC243	Omanatina	# 6	# 5	
2.	9DC242A	Operating	# 4	# 3	


For above 1GHz frequency range:

Due to the EUT's highest frequency generated is less than 108MHz, therefore the above 1GHz frequency is no need to measure.

(According to section Table Clause 1.4 of EN 61000-6-3: 2007 +A1:2011 +AC:2012 standard)

AUDIX Technology Corp. EMC Department No.53-11, Dingfu ,Linkou Dist., New Taipei City, 244, Taiwan, R.O.C. Tel: +886-2-26092133 Fax: +886-2-26099303 E-mail: emc@audixtech.com

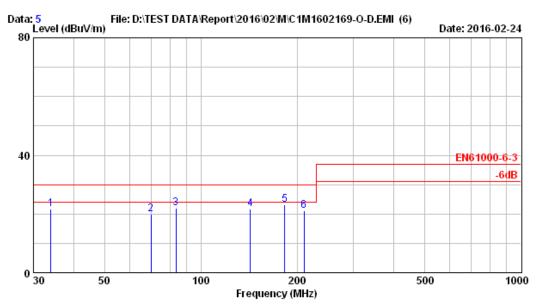
Site no. : OATS NO.8 Data no. : 6

Dis. / Ant. : 10m CBL6112B(2735) Ant. pol. : HORIZONTAL

Limit : EN61000-6-3

Env. / Ins. : 25*C/58% ESCI (558) Engineer : Gary Tsai

EUT : 9DC243
Power Rating : DC 12V
Test Mode : Operating


		Ant.	Cable		Emissio	n		
	Freq.	Factor	Loss	Reading	Level	Limits	Margin	Remark
	(MHz)	(dB/m)	(dB)	(dBµV)	(dBμV/m)	(dBμV/m)	(dB)	
1	33.950	17.16	0.90	1.28	19.33	30.00	10.67	QP
2	71.590	6.89	1.34	11.62	19.85	30.00	10.15	QP
3	83.560	7.99	1.47	8.65	18.10	30.00	11.90	QP
4	143.840	11.29	2.01	7.84	21.13	30.00	8.87	QP
5	181.950	9.31	2.36	8.75	20.41	30.00	9.59	QP
6	203.390	9.36	2.53	7.86	19.74	30.00	10.26	QP

Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading.

The emission levels that are 20dB below the official limit are not reported.

AUDIX Technology Corp. EMC Department No.53-11, Dingfu "Linkou Dist., New Taipei City, 244, Taiwan, R.O.C.
Tel: +886-2-26092133 Fax: +886-2-26099303
E-mail: emc@audixtech.com

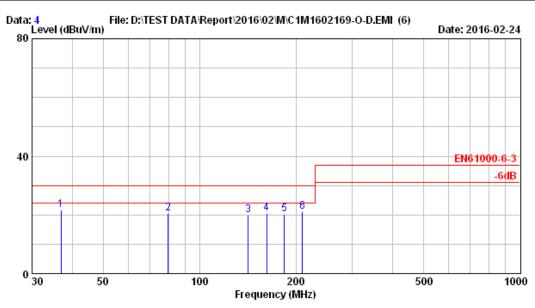
Site no. : OATS NO.8 Data no. : 5

Dis. / Ant. : 10m CBL6112B(2735) Ant. pol. : VERTICAL

Limit : EN61000-6-3

Env. / Ins. : 25*C/58% ESCI (558) Engineer : Gary Tsai

EUT : 9DC243
Power Rating : DC 12V
Test Mode : Operating


		Ant.	Cable		Emissio	n		
	Freq.	Factor	Loss	Reading	Level	Limits	Margin	Remark
	(MHz)	(dB/m)	(dB)	(dBμV)	(dBμV/m)	(dBμV/m)	(dB)	
1	33.950	17.16	0.90	3.52	21.57	30.00	8.43	QP
2	69.840	6.79	1.32	11.75	19.85	30.00	10.15	QP
3	83.510	7.99	1.47	12.54	21.99	30.00	8.01	QP
4	142.950	11.34	2.00	8.27	21.61	30.00	8.39	QP
5	182.950	9.29	2.37	11.53	23.19	30.00	6.81	QP
6	209.860	9.82	2.57	8.75	21.14	30.00	8.86	QP

Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading.

2. The emission levels that are 20dB below the official limit are not reported.

AUDIX Technology Corp. EMC Department No.53-11, Dingfu ,Linkou Dist., New Taipei City, 244, Taiwan, R.O.C. Tel: +886-2-26092133 Fax: +886-2-26099303 E-mail: emc@audixtech.com

Site no. : OATS NO.8

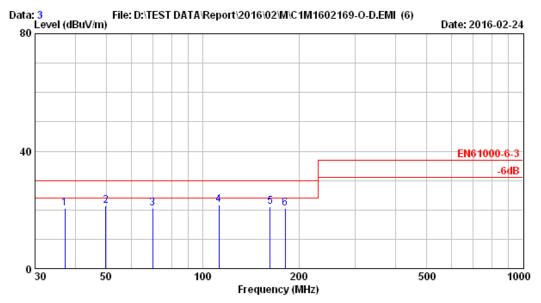
Data no. : 4 Ant. pol. : HORIZONTAL Dis. / Ant. : 10m CBL6112B(2735)

: EN61000-6-3 Limit

Env. / Ins. : 25*C/58% ESCI (558) Engineer : Gary Tsai

: 9DC242A Power Rating : DC 12V Test Mode : Operating


		Ant.	Cable		Emissio	n		
	Freq.	Factor	Loss	Reading	Level	Limits	Margin	Remark
	(MHz)	(dB/m)	(dB)	(dBµV)	(dBμV/m)	(dBμV/m)	(dB)	
1	36.950	15.22	0.94	5.58	21.73	30.00	8.27	QP
2	79.860	7.42	1.43	11.54	20.39	30.00	9.61	QP
3	141.760	11.40	1.99	6.62	20.01	30.00	9.99	QP
4	161.950	10.32	2.17	7.96	20.45	30.00	9.55	QP
5	183.950	9.28	2.37	8.65	20.31	30.00	9.69	QP
6	209.650	9.77	2.57	8.85	21.19	30.00	8.81	QP


Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading.

2. The emission levels that are 20dB below the official limit are not reported.

AUDIX Technology Corp. EMC Department No.53-11, Dingfu ,Linkou Dist., New Taipei City, 244, Taiwan, R.O.C. Tel: +886-2-26092133 Fax: +886-2-26099303

Site no. : OATS NO.8

Data no. : 3 Ant. pol. : VERTICAL Dis. / Ant. : 10m CBL6112B(2735)

: EN61000-6-3 Limit

Env. / Ins. : 25*C/58% ESCI (558) Engineer : Gary Tsai

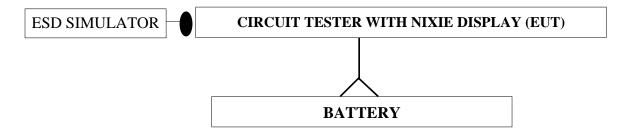
: 9DC242A Power Rating : DC 12V Test Mode : Operating

			Ant.	Cable		Emissio	n		
		Freq.	Factor			Level		Margin	Remark
		(MHz)	(dB/m)	(dB)	(dBµV)	(dBµV/m)	(dBμV/m)	(dB)	
-									
	1	37.138	15.02	0.94	4.65	20.61	30.00	9.39	QP
	2	49.965	9.80	1.10	10.56	21.46	30.00	8.54	QP
	3	69.850	6.79	1.32	12.35	20.45	30.00	9.55	QP
	4	112.427	12.06	1.74	7.95	21.75	30.00	8.25	QP
	5	162.350	10.29	2.18	8.59	21.05	30.00	8.95	QP
	6	181.025	9.31	2.35	8.91	20.58	30.00	9.42	QP

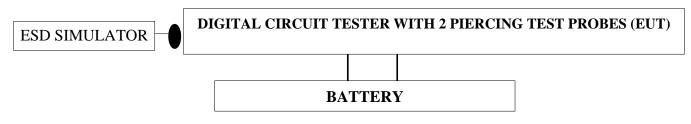
Remarks: 1. Emission Level= Antenna Factor + Cable Loss + Reading.

2. The emission levels that are 20dB below the official limit are not reported.

6. ELECTROSTATIC DISCHARGE IMMUNITY TEST

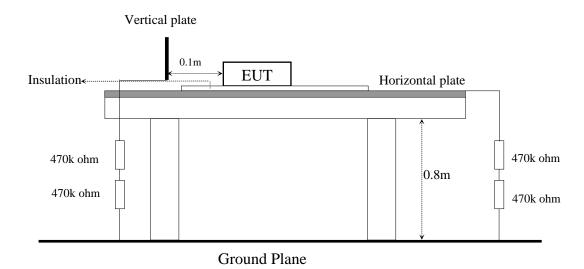

6.1. Test Equipment

Item	Type	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	ESD Simulator	TESEQ	NSG 437	316	2015. 03. 24	1 Year


6.2. Block Diagram of Test Setup

6.2.1. Test Step Diagram (1)

(1)Test Model: 9DC243



(2)Test Model: 9DC242A

: AIR/CONTACT DISCHARGE

6.2.2. Test Setup Diagram (2)

6.3. Test Standard

EN 61000-6-1:2007

[EN 61000-4-2:2008, Test Level : Contact: ±4kV, Air: ±8kV]

6.4. Severity Levels and Performance Criterion

6.4.1. Severity levels

Laval	Test Voltage	Test Voltage
Level	Contact Discharge (kV)	Air Discharge (kV)
1.	2	2
2.	4	4
3.	6	8
4.	8	15
X	Special	Special

6.4.2. Performance criterion: **B**

6.5. Operating Condition of EUT

Same as radiated disturbance measurement which is listed in 5.4 except the test set up replaced by section 6.2.

6.6. Test Procedure

6.6.1. Air Discharge:

This test is done on a non-conductive surfaces. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the ESD generator discharge electrode shall be removed from the EUT. The generator is then retrigged for a new single discharge and repeated 10 discharges each at positive and negative polarity for each preselected test point. This procedure shall be repeated until all the air discharge completed.

6.6.2. Contact Discharge:

All the procedure shall be same as 6.6.1. except that the tip of the discharge electrode shall touch the EUT conductive surfaces & repeated 10 discharges each at positive and negative polarity for each test point before the discharge switch is operated.

6.6.3. Indirect discharge for horizontal coupling plane:

At least 10 discharges each at positive and negative polarity shall be applied to the horizontal coupling plane, at points on each side of the EUT. The ESD generator positions vertically at a distance of 0.1m from the EUT and with the discharge electrode touching the coupling plane.

6.6.4. Indirect discharge for vertical coupling plane:

At least 10 discharges each at positive and negative polarity shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

6.6.5. For above tests, the voltage was increased from the minimum to the selected test level.

6.7. Test Results

PASSED. (Complied with Criterion A)

The EUT with following test mode was performed during this section testing and all the test results are attached in next page.

The details are as follows:

Mode	Test Model	Test Mode
1.	9DC243	Omanatina
2.	9DC242A	Operating

Electrostatic Discharge Immunity Test Results AUDIX TECHNOLOGY CORPORATION

Applicant: King Tony Tools Co., Ltd.				Tes	st Date :	2016. (03. 02	
EUT: Circuit Tester with "Nixie" Display					nperature:		20	
<u>M/N 9DC2</u> Power Supply <u>:</u>		a Battery)		Ни	midity:	4	!3 %	
Engineer: Sa	m Yan			Atn	nospheric Pr	ressure:	99 kPa	
			_	Tes	st Modes:	See Sect	tion 6.7.	
Air Discharge		Voltage	kV Leve	l/D	Sischarge pe	r polarity 1	0 / Result	
Test Location	+2	-2	+4		-4	+8	-8	Comments
SEAM (1)	ND	ND	ND		ND	ND	ND	
Contact Discharge		Voltage k	V Level	/1	Discharge p	er polarity	10 / Result	·
Test Location	+2	-2	+4		-4			Comments
Metal(2~4)	A	A	\boldsymbol{A}		A			
Indirect Contact:		Voltage k	V Level	/1	Discharge p	er polarity	10 / Result	
Test Location	+2	-2	+4		-4			Comments
VCP Front	A	A	\boldsymbol{A}		A			
VCP Right	A	A	A		A			
VCP Left	A	A	A		A			
VCP Back	A	A	A		A			
HCP Bottom	A	A	A		A			
Additional Notes:								
Measurement Points	Please refer	to the Photo	s of ESD	Test	t Points			

ND=No Discharge; Meets criteria but unable to obtain an electrostatic discharge (ESD) at this test point.

Electrostatic Discharge Immunity Test Results AUDIX TECHNOLOGY CORPORATION

Applicant: King Tony Tools Co., Ltd.				Tes	st Date :	2016. 0	93. 02	
EUT: Digital Ci probes	rcuit Tester	with 2 pierc	ing test	Ten	nperature :		20	
<u>M/N 9DC2</u>	42A							
Power Supply : 1	DC 12V (Via	ı Battery)		Hui	midity:	4.	3 %	
Engineer : San	m Yan			Atn	nospheric Pi	ressure:	99 kPa	
				Tes	st Modes:	See Sect	ion 6.7.	
Air Discharge		Voltage	kV Leve	2l/D	Discharge pe	r polarity 10	0 / Result	
Test Location	+2	-2	+4		-4	+8	-8	Comments
SEAM (1,2)	ND	ND	ND	1	ND	ND	ND	
Contact Discharge		Voltage k	V Level	/1	Discharge p	er polarity I	10 / Result	
Test Location	+2	-2	+4		-4			Comments
Metal(3,4)	A	A	A		A			
Indirect Contact:		Voltage k	V Level	/1	Discharge p	er polarity I	10 / Result	
Test Location	+2	-2	+4		-4			Comments
VCP Front	A	A	A		A			
VCP Right	A	A	A		A			
VCP Left	A	A	A		A			
VCP Back	A	A	A		A			
HCP Bottom	A	A	A		A			
Additional Notes:								
Measurement Points	Please refer	r to the Photos	s of ESD	Test	Points			

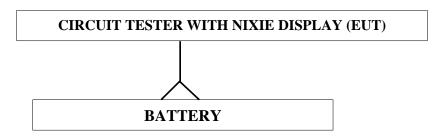
ND=No Discharge; Meets criteria but unable to obtain an electrostatic discharge (ESD) at this test point.

7. RF FIELD STRENGTH IMMUNITY TEST

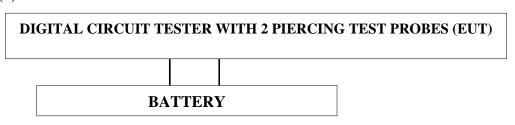
7.1. Test Equipment

7.1.1. For $80MHz \sim 1000MHz$

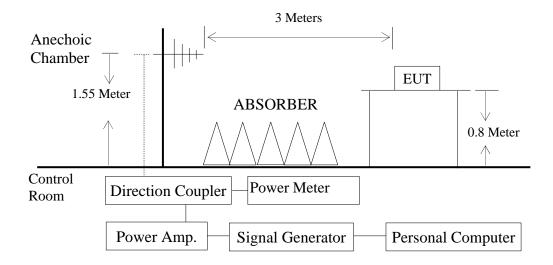
Item	Type	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
	Radiated Immunity System	TESEQ	ITS 6006	033009	2015. 09. 24	1 Year
2.	Power Amplifier	TESEQ	CBA 1G-275	T44214	NCR	NCR
3.	Power Meter	TESEQ	PM 6006	073364	2015. 09. 26	1 Year
4.	Power Antenna	Schwarzbeck	STLP 9128 E	9128E084	NCR	NCR
5.	Direction Coupler	WERLATONE	C5982-10	98618	2015. 08. 12	1 Year


7.1.2. For 1GHz ~ 2.7GHz

Item	Type	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Radiated Immunity System	TESEQ	ITS 6006	033009	2015. 09. 24	1 Year
2.	Power Amplifier	TESEQ	CBA 1G-275	T44215	NCR	NCR
3.	Power Meter	TESEQ	PM 6006	073363	2015. 09. 26	1 Year
4.	Power Antenna	Schwarzbeck	STLP 9149	9149-185	NCR	NCR
5.	Direction Coupler	TESEQ	C6187-10	98619	2015. 08. 12	1 Year


7.2. Block Diagram of Test Setup

7.2.1. Test Setup Diagram


(1)Test Model: 9DC243

(2)Test Model: 9DC242A

7.2.2. R/S Test Setup

7.3. Test Standard

EN 61000-6-1:2007

[EN 61000-4-3:2010, Test Level: 3V/m or 1V/m, 80% AM (1kHz)]

7.4. Severity Levels and Performance Criterion

7.4.1. Severity levels

Level	Field Strength V/m
1.	1
2.	3
3	10
X.	Special

7.4.2. Performance criterion: A

7.5. Operating Condition of EUT

Same as radiated disturbance measurement which is listed in 5.4 except the test set up replaced by section 7.2.

7.6. Test Procedure

The field sensor is placed on the EUT table (0.8 meter above the ground) which is 3 meters away from the transmitting antenna. Through the signal generator, power amplifier and transmitting antenna to produce a uniformity field strength (1V/m measured by field sensor) around the EUT table from frequency range 80MHz to 1000MHz 1.4GHz-2.0GHz 2.0GHz-2.7GHz and records the signal generator's output level at the same time for whole measured frequency range. Then, put EUT and its simulators on the EUT turn table and keep them 3 meter away from the transmitting antenna which is mounted on an antenna tower and fixes at 1.55 meter height above the ground. Using the recorded signal generator's output level to measure the EUT from frequency range 80MHz to 1000MHz、1.4GHz-2.0GHz、2.0GHz-2.7GHz and both horizontal & vertical polarization of antenna must be set and measured. Each of the four sides of EUT must be faced this transmitting antenna and measures individually.

A CCD camera was put inside the chamber and through its display to monitor the EUT operational situation to judge the EUT Compliance criterion during measurement.

All the scanning conditions are as follows:

	Condition of Test	Remarks
	Field Strength Amplitude Modulated Scanning Frequency	3V/m, 1V/m 1kHz, 80% AM 80MHz – 1000MHz 1.4GHz – 2.0GHz
4. 5. 6.	Step Size The Rate of Sweep Dwell Time	2.0GHz – 2.7GHz 1% increments 0.0015 decade/s 3 Sec.

7.7. Test Results

PASSED. (Complied with Criterion A)

The EUT with following test mode was performed during this section testing and all the test results are attached in next page.

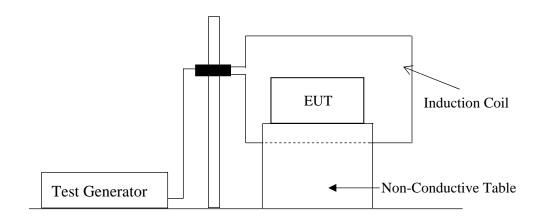
The details are as follows:

Mode	Test Model	Test Mode
1.	9DC243	Operating
2.	9DC242A	Operating

RF Field Strength Immunity Test Results Audix technology corporation

Applicant: King Tony T	ools Co., Ltd.		Test Date : 20	16. 03. 04	
EUT: Circuit Tester with "Nixie" Display, Digital Circuit Tester with 2 piercing test probes		Temperature: 21			
M/N 9DC243,		test probes			
Power Supply:DC		tery)	Humidity:	51 %	
Working Condition:	See Section	5.4.	Test Modes: See Se	ection 7.7.	
Engineer: Xar Z	huo				
Frequency Range (MHz)	Position (Angle)	Polarity (H or V)	Field Strength (V/m)	Results	Performance Criterion
80 ~ 1000	0 °	Н	3V/m+Modulated	Pass	\boldsymbol{A}
80 ~ 1000	90°	Н	3V/m+Modulated	Pass	\boldsymbol{A}
80 ~ 1000	180°	Н	3V/m+Modulated	Pass	\boldsymbol{A}
80 ~ 1000	270°	Н	3V/m+Modulated	Pass	A
80 ~ 1000	0 °	V	3V/m+Modulated	Pass	A
80 ~ 1000	90°	V	3V/m+Modulated	Pass	A
80 ~ 1000	180°	V	3V/m+Modulated	Pass	A
80 ~ 1000	270°	V	3V/m+Modulated	Pass	A
1.4 ~ 2GHz	0 °	Н	3V/m+Modulated	Pass	A
1.4 ~ 2GHz	90°	Н	3V/m+Modulated	Pass	A
1.4 ~ 2GHz	180°	Н	3V/m+Modulated	Pass	A
1.4 ~ 2GHz	270°	Н	3V/m+Modulated	Pass	A
1.4 ~ 2GHz	0 °	V	3V/m+Modulated	Pass	A
1.4 ~ 2GHz	90°	V	3V/m+Modulated	Pass	A
1.4 ~ 2GHz	180°	V	3V/m+Modulated	Pass	A
1.4 ~ 2GHz	270°	V	3V/m+Modulated	Pass	A
2 ~ 2.7GHz	0 °	Н	1V/m+Modulated	Pass	A
2 ~ 2.7GHz	90°	Н	1V/m+Modulated	Pass	A
2 ~ 2.7GHz	180°	Н	1V/m+Modulated	Pass	A
2 ~ 2.7GHz	270°	Н	1V/m+Modulated	Pass	A
2 ~ 2.7GHz	0 °	V	1V/m+Modulated	Pass	A
2 ~ 2.7GHz	90°	V	1V/m+Modulated	Pass	A
2 ~ 2.7GHz	180°	V	1V/m+Modulated	Pass	A
2 ~ 2.7GHz	270°	V	1V/m+Modulated	Pass	A
Remark: No error occur	red.				

8. POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST


8.1. Test Equipment

Item	Type	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Interval
1.	Magnetic field generator	Narda S.T.S. / PMM	PMM1008	0100X30101	2015. 11. 19	1 Year

8.2. Block Diagram of Test Setup

8.2.1. Block Diagram of connection between EUT and simulators. Same as section 7.2.1.

8.2.2. Test Setup

8.3. Test Standard

EN 61000-6-1:2007

[EN 61000-4-8:2009, Test Level: 50/60Hz, 3A/m (r.m.s.)]

8.4. Severity Levels and Performance Criterion

8.4.1. Severity level

Level	Magnetic Field Strength Continuous Field A/m
1.	1
2.	3
3.	10
4.	30
5.	100
X	Special

8.4.2. Performance criterion: A

8.5. Operating Condition of EUT

Same as radiated disturbance measurement which is listed in 5.4 except the test set up replaced by section 8.2.

8.6. Test Procedure

The EUT placed on 0.8m high table. And subjected to the test magnetic field by using the induction coil of standard dimensions (1m x 2.6m). The induction coil rotated by 90 degrees in order to expose the EUT to the test field with different orientations. All cables of EUT exposed to magnetic field for 1m of their length.

8.7. Test Results

PASSED. (Complied with Criterion A)

The EUT with following test mode was performed during this section testing and all the test results are attached in next page.

The details are as follows:

Mode	Test Model	Test Mode
1.	9DC243	Operating
2.	9DC242A	Operating

Power Frequency Magnetic Field Immunity Test Results AUDIX TECHNOLOGY CORPORATION

Applicant: King Tony Tools Co., Ltd.			Test Dat	te:2	016. 03. 04	
EUT: Circuit Tester with "Nixie" Display, Digital Circuit Tester with 2 piercing test probes M/N 9DC243, 9DC242A					20	
	DC 12V (Via Batter See Section 5.4 cky Chen		Humidit Test Mo		46 % Section 8.7.	
Power Frequency Magnetic Field	Testing Duration		oil tation		Result & nce Criterion	Remark
50/60Hz, 3A/m	1 Min	X-a	uxis	Po	ass, A	
50/60Hz, 3A/m	1 Min	Y-0	ıxis	Po	ass, A	
50/60Hz, 3A/m	1 Min	Z-a	ıxis	Po	ass, A	
Remark: No error	Remark: No error occurred.					

9. MEASUREMENT UNCERTAINTY LIST

The measurement uncertainty was estimated for test on the EUT according to CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage of K=2.

The uncertainties value is not used in determining the PASS/FAIL results.

Test Items/Facilities	Frequency/Equipment/Unit	Uncertainty
Conducted emissions	9kHz-150kHz	±3.7dB
at AC mains power port	150kHz-30MHz	±3.5dB
Conducted emissions at wired network port	150kHz-30MHz	±3.5dB
Conducted emissions at broadcast receiver tuner port	150kHz-30MHz	±3.5dB
Conducted emissions Power Clamp	30MHz-300MHz	±4.4dB
Radiated electromagnetic	9kHz-30MHz	±0.5dB
	30MHz-200MHz, 3m, Horizontal	±4.3dB
	200MHz-1000MHz, 3m, Horizontal	±4.3dB
	30MHz-200MHz, 3m, Vertical	±4.4dB
	200MHz-1000MHz, 3m, Vertical	±3.9dB
Radiated emissions	30MHz-200MHz, 10m, Horizontal	±4.3dB
(10m Chamber)	200MHz-1000MHz, 10m, Horizontal	±4.1dB
	30MHz-200MHz, 10m, Vertical	±4.3dB
	200MHz-1000MHz, 10m, Vertical	±3.8dB
	1GHz-6GHz, 3m	±5.1dB
	6GHz-18GHz, 3m	±5.5dB
	30MHz-200MHz, 3m, Horizontal	±3.9dB
	200MHz-1000MHz, 3m, Horizontal	±4.3dB
Radiated emissions	30MHz-200MHz, 3m, Vertical	±4.5dB
(No.1 3m Chamber)	200MHz-1000MHz, 3m, Vertical	±4.1dB
	1GHz-6GHz, 3m	±5.1dB
	6GHz-18GHz, 3m	±5.5dB
	30MHz-200MHz, 3m, Horizontal	±4.3dB
	200MHz-1000MHz, 3m, Horizontal	±4.3dB
Radiated emissions	30MHz-200MHz, 3m, Vertical	±4.4dB
(No.2 3m Chamber)	200MHz-1000MHz, 3m, Vertical	±3.9dB
	1GHz-6GHz, 3m	±5.2dB
	6GHz-18GHz, 3m	±5.2dB
	30MHz-200MHz, 3m, Horizontal	±4.7dB
Radiated emissions	200MHz-1000MHz, 3m, Horizontal	±4.5dB
(No.3 3m Chamber)	30MHz-200MHz, 3m, Vertical	±4.3dB
	200MHz-1000MHz, 3m, Vertical	±4.1dB

Test Items/Facilities	Frequency/Equipment/Unit	Uncertainty
	30MHz-200MHz, 3m, Horizontal	±4.5dB
	200MHz-1000MHz, 3m, Horizontal	±4.4dB
	30MHz-200MHz, 3m, Vertical	±4.4dB
Radiated emissions	200MHz-1000MHz, 3m, Vertical	±4.0dB
(No.3 OATS)	30MHz-200MHz, 10m, Horizontal	±4.5dB
	200MHz-1000MHz, 10m, Horizontal	±4.2dB
	30MHz-200MHz, 10m, Vertical	±4.3dB
	200MHz-1000MHz, 10m, Vertical	±4.0dB
	30MHz-200MHz, 3m, Horizontal	±4.2dB
	200MHz-1000MHz, 3m, Horizontal	±4.7dB
	30MHz-200MHz, 3m, Vertical	±4.4dB
Radiated emissions	200MHz-1000MHz, 3m, Vertical	±4.4dB
(No.5 OATS)	30MHz-200MHz, 10m, Horizontal	±4.2dB
	200MHz-1000MHz, 10m, Horizontal	±4.6dB
	30MHz-200MHz, 10m, Vertical	±4.4dB
	200MHz-1000MHz, 10m, Vertical	±4.4dB
	30MHz-200MHz, 3m, Horizontal	±4.3dB
	200MHz-1000MHz, 3m, Horizontal	±4.4dB
	30MHz-200MHz, 3m, Vertical	±4.5dB
Radiated emissions	200MHz-1000MHz, 3m, Vertical	±4.1dB
(No.6 OATS)	30MHz-200MHz, 10m, Horizontal	±4.3dB
	200MHz-1000MHz, 10m, Horizontal	±4.2dB
	30MHz-200MHz, 10m, Vertical	±4.4dB
	200MHz-1000MHz, 10m, Vertical	±4.1dB
	30MHz-200MHz, 3m, Horizontal	±3.9dB
	200MHz-1000MHz, 3m, Horizontal	±4.5dB
	30MHz-200MHz, 3m, Vertical	±4.6dB
Radiated emissions	200MHz-1000MHz, 3m, Vertical	±4.5dB
(No.7 OATS)	30MHz-200MHz, 10m, Horizontal	±3.9dB
	200MHz-1000MHz, 10m, Horizontal	±4.3dB
	30MHz-200MHz, 10m, Vertical	±4.6dB
	200MHz-1000MHz, 10m, Vertical	±4.5dB
	30MHz-200MHz, 3m, Horizontal	±4.5dB
	200MHz-1000MHz, 3m, Horizontal	±4.3dB
	30MHz-200MHz, 3m, Vertical	±4.6dB
Radiated emissions	200MHz-1000MHz, 3m, Vertical	±4.1dB
(No.8 OATS)	30MHz-200MHz, 10m, Horizontal	±4.7dB
	200MHz-1000MHz, 10m, Horizontal	±4.2dB
	30MHz-200MHz, 10m, Vertical	±4.6dB
	200MHz-1000MHz, 10m, Vertical	±4.0dB

Test Items/Facilities	Frequency/Equipment/Unit	Uncertainty
Harmonic current	NSG 1007-45	±0.7%
Voltage fluctuations & flicker	NSG 1007-45	±0.2%
	NSG 437	$\begin{array}{ll} U_{current} &= 7.3\% \\ U_{voltage} &= 1.0\% \\ U_{time} &= 9.0\% \end{array}$
Electrostatic discharge (ESD)	Ditto	$\begin{array}{ll} U_{current} &= 4.0\% \\ U_{voltage} &= 2.0\% \\ U_{time} &= 3.0\% \end{array}$
	MZ-15/EC	$\begin{array}{ll} U_{current} &= 10.0\% \\ U_{voltage} &= 1.8\% \\ U_{time} &= 20.0\% \end{array}$
Radio-frequency electromagnetic field,	80MHz-200MHz	±1.7dB
Continuous radiated disturbances	200MHz-1000MHz	±1.8dB
(RS)	1GHz-6GHz	±1.7dB
Electrical fast transient/burst (EFT)	AC power port	$\begin{array}{ll} U_{voltage} &= 1.0\% \\ U_{time} &= 4.0\% \end{array}$
	Signal port	$\begin{array}{ll} U_{voltage} &= 4.0\% \\ U_{time} &= 3.0\% \end{array}$
	Open-circuit output voltage 0.5kV-6kV (1.2us/50us)	$U_{voltage} = 4.0\%$
	Open-circuit output voltage 0.5kV-6kV (10us/700us)	$U_{voltage} = 4.0\%$
	Rise time (30%-90%) x 1.67: 0.5kV-6kV (1.2us/50us)	$U_{time} = 3.0\%$
Surge	Rise time (30%-90%) x 1.67: 0.5kV-6kV (10us/700us)	$U_{time} = 3.0\%$
	Duration time: 0.5kV-6kV (1.2us/50us)	$U_{time} = 3.0\%$
	Duration time: 0.5kV-6kV (10us/700us)	$U_{time} = 3.0\%$
	Short-circuit output current 0.25KA-3KA (8us / 20us)	$U_{current} = 3.0\%$
	Rise time (10%-90%) x 1.25: (8us/20us)	$U_{time} = 3.0\%$
	Duration time: (8us/20us)	$U_{time} = 3.0\%$
Radio-frequency,	CDN (AC power port)	1.5 dB
continuous conducted disturbances (CS)	EM-Clamp (Signal port)	3.3 dB
Power-frequency magnetic field	MAG100.1	4%
(PFMF)	PMM1008	2%
Voltage dips	TESEQ	$\begin{array}{ll} U_{voltage} &= 0.1\% \\ U_{current} &= 0.2\% \end{array}$

10.PHOTOGRAPHS

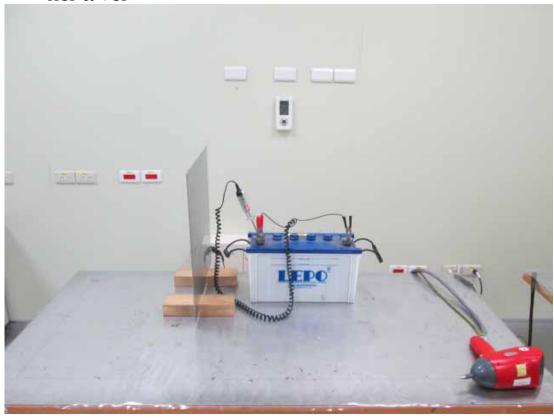
10.1.Photos of Radiated Disturbance Measurement at Open Area Test Site Test Model: 9DC243

FRONT VIEW OF RADIATED MEASUREMENT

BACK VIEW OF RADIATED MEASUREMENT

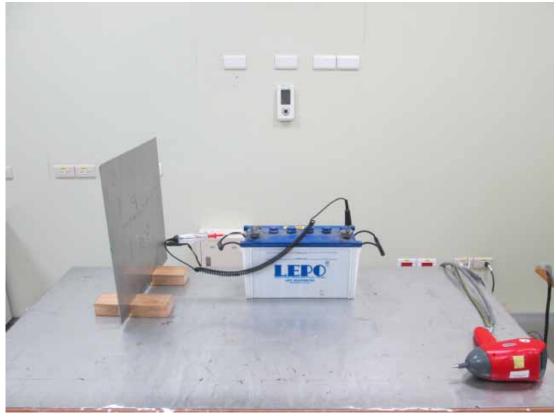
Test Model: 9DC242A

FRONT VIEW OF RADIATED MEASUREMENT


BACK VIEW OF RADIATED MEASUREMENT

10.2.Photos of Electrostatic Discharge Immunity Test

Test Model: 9DC243 Air & Contact Discharge


HCP & VCP

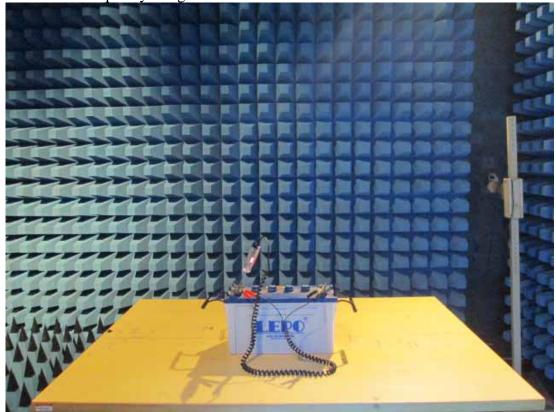
Test Model: 9DC242A Air & Contact Discharge

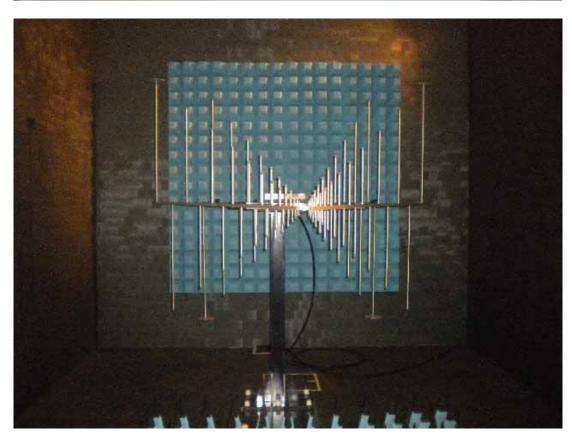
HCP & VCP

Test Model: 9DC243

Photo of ESD Test Points

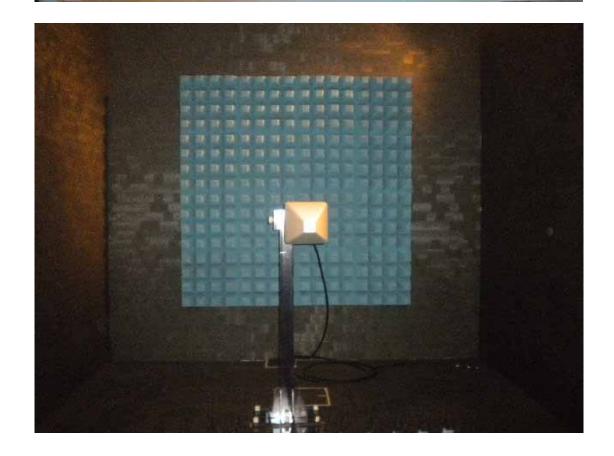
Test Model: 9DC242A **Photo of ESD Test Points**

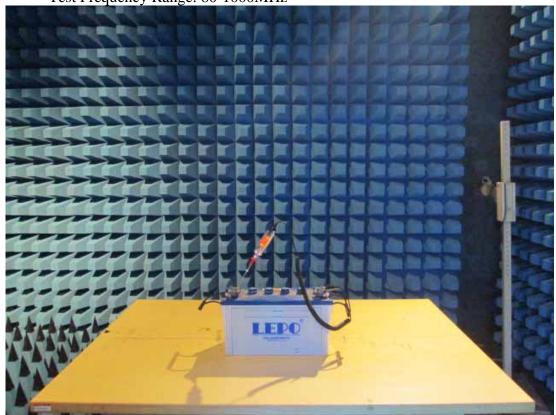

Photo of ESD Test Points

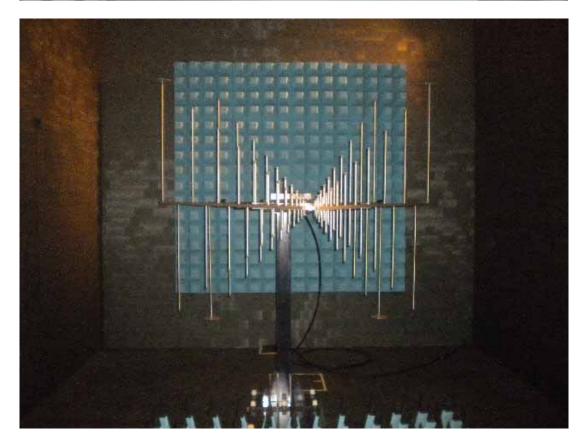


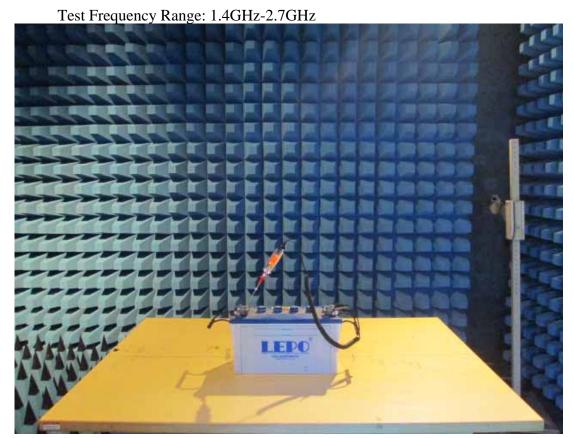
10.3.Photos of RF Strength Immunity Test

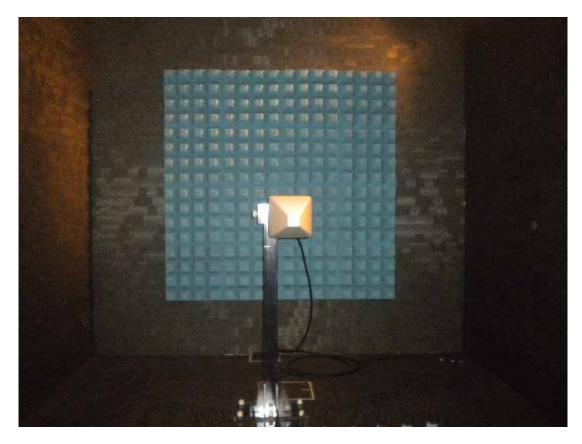

Test Model: 9DC243


Test Frequency Range: 80-1000MHz


Test Model: 9DC243




Test Model: 9DC242A


Test Frequency Range: 80-1000MHz

Test Model: 9DC242A

10.4.Photo of Power Frequency Magnetic Field Immunity Test

APPENDIX (Photos of EUT)

Total Pages: 9 Pages

M/N 9DC243, Figure 1 ~ 6 Figure 1 General Appearance

Figure 2 General Appearance (Front & Side View)

Figure 3
General Appearance (Back & Side View)

Figure 4 Internal View (Removed Cover)

Figure 5 Internal View (Internal Board, Front View)

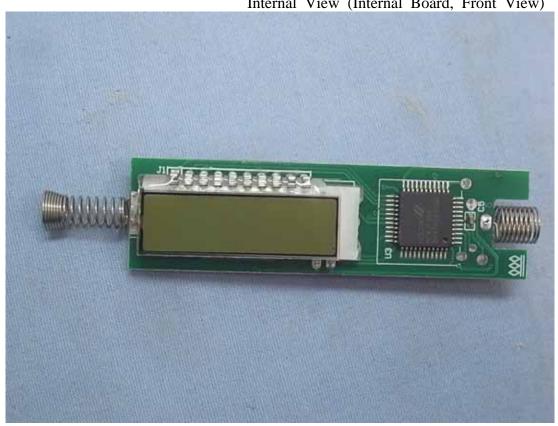
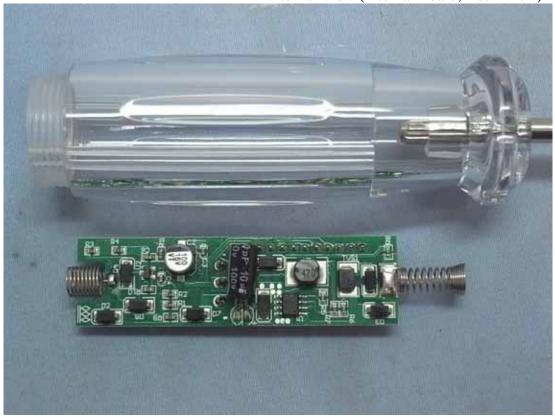



Figure 6 Internal View (Internal Board, Back View)

M/N 9DC242A, Figure 7 ~ 15 Figure 7 General Appearance, Type A

Figure 8 General Appearance (Front & Side View) , Type A

 $\begin{array}{c} Figure \ 9 \\ General \ Appearance \ (Back \ \& \ Side \ View) \ , \ Type \ A \end{array}$

Figure 10 General Appearance, Type B

Figure 11 General Appearance (Front & Side View), Type B

Figure 12 General Appearance (Back & Side View) , Type B

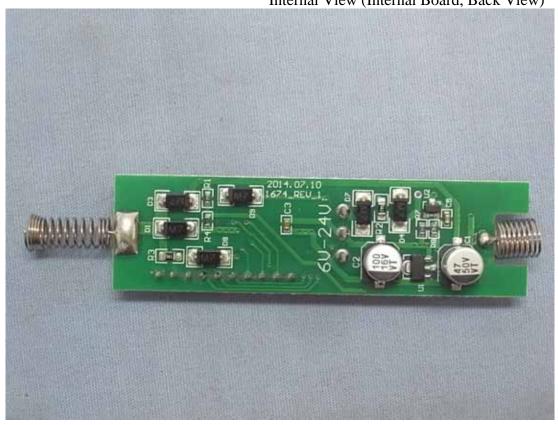


Figure 14 Internal View (Internal Board, Front View)

Figure 15 Internal View (Internal Board, Back View)

M/N 9DC242, Figure 16 ~ 18 Figure 16 General Appearance

Figure 17 General Appearance (Front & Side View)

Figure 18 General Appearance (Back & Side View)

